Arctic Sea Ice and East Asia Monsoon

Yongqi Gao^{1,2,3}, Dong Guo³, Fei Li³, Ingo Bethke² Nansen Environmental and Remote Sensing Center Bejerknes Centre for Climate Research Nansen-Zhu International Research Centre

Arctic Sea Ice and Weather

- Arctic Warming-Westerlies-Mid-Lat Extremes
- Arctic Sea Ice-Cold Eurasian and NAm
- Arctic Sea Ice-Wet European Summer
- Arctic Sea Ice-Rainfall in Midterranean
- Arctic Sea Ice-Asian Monsoons

East Asia Summer Monsoon: Shift in Precipitation

Factors Impacting Asia Monsoons

Eurasian land surface temperature, including Tibet Plateau

ENSO and **PDO**

>Siberian snow cover

Vegetation

>Upper troposphere cooling

North Atlantic SST

>Antarctic Oscillation

≻Indian Ocean SST

> Arctic Oscillation

> Arctic Sea Ice

Cold Spells

Tao (1959) Almost all cold spells in China (East Asia) were originated from Arctic Ocean, particularly from the Barents/Kara Seas. When cold spells took place, there was an adjustment of planenary waves over the Eurasian continent.

Atmospheric Impact

Fletcher (1968) speculated that the complete removal of Arctic sea ice would cause weaker meridional temperature gradient and weaker zonal circulation, and would be accompanied by more highlatitude snowfall due to increased evaporation over the Arctic Ocean

Atmospheric Impact

Fletcher (1968) speculated that the complete removal of Arctic sea ice would cause weaker meridional temperature gradient and weaker zonal circulation, and would be accompanied by more highlatitude snowfall due to increased evaporation over the Arctic Ocean

Atmospheric Impact (Model)

Newson, 1973, I

Atmospheric Impact (East Asia, Model)

More than normal sea ice cover in Greenland-Barents Seas can lead to increased precipitation over Southeastern China

Yang et al., 1994

Recent winter snow cover anomalies Liu, Curry and Wang, PNAS, 2012

East Asia Summer Monsoon (EASM) vs. Arctic Sea Ice

Precipitation & Arctic Sea Ice

(a) Corr. Precip.&EASMI

(b) Corr. Precip.&SIAI

Guo, D., Gao, Y.Q., Bethke, I., Gong, D.Y., Johannessen, O.M., Wang, H.J., 2013. TAC

Sea Ice & Atmosphere Circulation

Arctic Sea Ice and SST

(c)SIC PC1,SST,UV850hPa, MJJ

Bergen Climate Model (v2) (Otterå et al., 2009)

- ARPEGE
 - Resolution: T42, ~2.8x2.8, 31 layers
 - Volcanic aerosols implemented
- MICOM
 - Resolution: ~2.4x2.4, 35 isopycnic layers
 - Reference pressure at 2000 m
 - Incremental remapping for tracer advection (better conservation)
- Thermodynamic and dynamic sea-ice module (GELATO)
 - Multi-ice categories
- No carbon cycle or vegetation:

ARPEGE

Arctic Sea Ice: Boundary Conditions

Arctic Sea Ice: Boundary Conditions

Arctic Sea Ice & Precipitation

Spring Arctic Oscillation and East Asia Summer Monsoon

Gong, D.Y., Yang, J., Kim, S.J., Gao, Y.Q. Guo, D., Zhou, T.J., Hu, M. 2011, Climate Dynamics

Conclusions

- The SST in North Pacific bridge the spring Arctic sea ice cover and the East Asian summer monsoon precipitation
- The mediating role of SST changes is highlighted by the result that only the AOGCM, but not the AGCM, reproduces the observed sea ice-EASM linkage

AO and East Asia Winter Monsoon

Li, F., Wang, H,J, Gao, Y,Q. 2014, Journal of Climate

Sea Ice Impact: Eurasian Cooling (CAM3) (b) SAT

Li, F., Wang, H,J, Gao, Y,Q. 2014, Journal of Climate

Conclusion

 Autumn Arctic sea ice reduction leads to Eurasian cooling. It in turn results in westward extension of EAJS and bridge the AO and EAWM

Li, F., Wang, H,J, Gao, Y,Q. 2014, Journal of Climate

