

Interactions between Arctic sea ice changes and the large-scale circulation Ralf Jaiser, K. Dethloff, D. Handorf, A. Rinke

(Picture: S. Hendricks/AWI)

Polar amplifiers of climate change

Stratospheric Ozone

Aerosols & Black Carbon

Clouds & Water Vapor

Carbon & Methane

Ice & Snow albedo

Cascade of atmospheric processes Sub-grid scale processes → boundary layer turbulence → synoptic cyclones → planetary waves → teleconnections Nonlinear system with internally generated climate variability Changed heat, momentum, humidity and tracer transports between mid-latitudes and the Arctic

HELMHOLTZ

High and low phases of Arctic sea ice extent @W

- Arctic sea ice retreat
- Warming Arctic Ocean
- Enhanced October snow cover
- Stronger Siberian high
- Negative AO/NAO phases
- Colder mid-latitudes

➡Arctic Paradox

Atmospheric changes in the Siberian Domain @ AVI

Reduced sea ice in August/September

Additional heat stored in ocean

Warmer surface temperatures in following seasons

Reduced atmospheric vertical stability

Amplified baroclinic weather systems in autumn

Difference of sea ice concentration low-high

Siberian Domain in magenta

Lower vertical stability (10⁻³ Km⁻¹)

Enhanced Eady Growth Rate (day-1)

Atmospheric changes initiated by low sea ice conditions

	Reduced sea ice in August/September	Baroclinic Arctic Response
	Additional heat stored in ocean	
	Warmer surface temperatures in following seasons	
	Reduced atmospheric vertical stability	
	Amplified baroclinic weather systems in autumn	
	Impact on planetary wave propagation in winter	
	Weaker stratospheric Polar Vortex	Large-scale Barotropic Response
	Negative NAO/AO phases	
	Higher probability of cold winters in Eurasia	HELMHOLTZ

December EP-Flux changes

10-90 days filtered vertical component of Eliassen-Palm flux (m²s⁻²), zonal mean

Localized Eliassen-Palm fluxes (EP-Flux) describe interaction between time averaged flow and the transient eddies

Vector points in direction of wave propagation, shading shows vertical EP-Flux

$$\frac{\mathrm{D}\overline{u}}{\mathrm{D}t} - fv^* = \nabla \cdot \vec{E}_u \qquad \vec{E}_u = \left[\frac{1}{2}\left(\overline{v'^2} - \overline{u'^2}\right), -\overline{u'v'}, f\frac{\overline{v'T'}}{S}\right]$$

Jaiser et al. Tellus, 2013

December EP-Flux changes

10-90 days filtered vertical component of Eliassen-Palm flux (m²s⁻²), zonal mean

- Intensified vertical EP-Flux in Arctic regions for low ice conditions
- Reaching from upper troposphere to stratosphere
- Significant with 90 % at tropopause level (black dashed lines)

Large-scale circulation changes

Maximum Covariance Analysis (MCA):

- Detect coupled patterns between climate fields
- Maximize covariance of time series associated with each pattern
- Identification of atmospheric circulation anomalies covarying with sea ice anomalies
- Decomposition of covariance matrix of data fields: Singular Value Decomposition

Variables used:

- Late summer (AS) sea ice concentration (HadISST1 data, 1979-2012)
- Mean sea level pressure & geopotential height fields in winter DJF (ERA-Interim, 1979-2012)

Large-scale circulation changes

Maximum Covariance Analysis (MCA):

- Detect coupled patterns between climate fields
- Maximize covariance of time series associated with each pattern
- Identification of atmospheric circulation anomalies covarying with sea ice anomalies
- Decomposition of covariance matrix of data fields: Singular Value Decomposition

Variables used:

- Late summer (AS) sea ice concentration (HadISST1 data, 1979-2012)
- Mean sea level pressure & geopotential height fields in winter DJF (ERA-Interim, 1979-2012)
- Shift to negative NAO pattern
- Higher probability of cold winters in Europe and western Asia

Large-scale circulation changes — Sea ice, MCA1

First pair of patterns in three different heights, 1979-2012, detrended

- Sea ice pattern is similar for MCA analysis with circulation patterns in different heights
- Hints on a barotropic pattern in troposphere and stratosphere
- AO-like in the troposphere
- Weakened stratospheric polar vortex

Large-scale circulation changes — Sea ice, MCA2

Second pair of patterns in three different heights, 1979-2012, detrended

- Sea ice pattern is similar for MCA analysis with circulation patterns in different heights
- Hints on a barotropic pattern in troposphere and stratosphere
- Wavy response in troposphere (Pacific)
- Shifted stratospheric polar vortex

Large-scale circulation changes – Snow @W

First pair of patterns in three different heights, 1979-2012, detrended

- October snow cover pattern is similar for MCA analysis with circulation patterns in different heights
- Hints on a barotropic pattern in troposphere and stratosphere
- AO-like in the troposphere
- Weakened stratospheric polar vortex
- Mechanism by Cohen et al. (2007)

Summary – ERA-Interim Reanalysis

Atmospheric circulation changes initiated by low sea ice conditions

- Higher temperatures in years with lower sea ice concentration
 - Resulting decreased vertical stability and higher Eady Growth Rate
- Large-scale circulation anomalies coupled with sea ice concentration changes and snow cover changes
 - Barotropic from SLP to 10 hPa GPH
- Intensification of the vertical planetary scale EP flux

Are global and regional climate models able to reproduce this?

Global and regional climate models

Global atmospheric model ECHAM6 (MPI-ESM-MR)

- Atmosphere only runs (AMIP) from CMIP5 archive
- T63 spectral resolution (≈2°×2° latitude/longitude grid)
- 96 vertical levels up to 0.01 hPa
- 1979-2008, 3 ensemble members

Regional Atmosphere-Ocean-Sea Ice Model HIRHAM-NAOSIM

- High horizontal resolution of regional topographic structures at the surface
- Improved simulation of hydro-dynamical instabilities and baroclinic cyclones
- HIRHAM: resolution 0.50°, 19 vertical levels
- NAOSIM: resolution 0.25°, 30 vertical levels
- Improvements in the sea-ice schemes
- 1948-2008, 7 ensemble members

Simulated atmospheric changes – Temperature

Near surface temperature increase is missing

Temperature

Eady growth rate

Leads to missing effect on vertical stability and Eady Growth Rate

Simulated atmospheric changes – EP-Flux @AV/

Difference low-high ice — 10-90 days filtered vert. comp. of EP-Flux, zonal mean

- Stronger upward fluxes evident in ERA-Interim
- Troposphere-Stratosphere coupling not reproduced
- Temporal behaviour not reproduced

Simulated large-scale circulation changes @W

First pair of patterns in different heights, ECHAM6-MR 1979-2008, detrended

 Coupled sea ice pattern show a general trend of sea ice decline

- Hints on a barotropic pattern in troposphere and stratosphere
- Negative AO-like response missing

Simulated large-scale circulation changes @W

MCA 2 (ERA-Interim)

- negative AO-like response missing (MCA 1 in ERA-Interim)
- Stratospheric pattern
 different

MCA1 (ECHAM6-MR)

HIRHAM-NAOSIM regional climate model @AV/

Decline of sea ice extent in September after 2003 in model and observations

Sea-ice area anomalies (%; relative to 1961-1990) Thick red line ensemble mean Black lines: 7 ensemble members

Dorn et al., TC, 2012 Rinke et al. JGR, 2013

Simulated temperature patterns

Difference low minus high ice – Temperature at 975hPa (K) Winter (DJF)

Black lines/White dots 95 % significance level

- Warm Arctic Cold Siberia (WACS) pattern in observations and regional model simulation
- No WACS pattern in global model simulation

Summary – regional and global models (MAN)

	HIRHAM-NAOSIM	ECHAM6-ENS
Reduced sea ice in August/September	Yes	Prescribed
Additional heat stored in ocean	Yes	Prescribed
Warmer surface temperatures in following seasons	Yes, over some regions	Too weak
Reduced atmospheric vertical stability		No
Amplified baroclinic weather systems in autumn		No
Impact on planetary wave propagation in winter	Yes, in the troposphere, but different sea ice	Not consistently
Weaker stratospheric Polar Vortex		reproduced
Negative NAO/AO phases		
Higher probability of cold winters in Eurasia	Eurasia	