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some compelling correlations between observed ice loss  
and atmospheric changes 

Environ. Res. Lett. 7 (2012) 014007 J L Cohen et al

Figure 1. (a) The annual-mean area-averaged land temperature
anomalies (�C; averaged poleward of 20�N) from 1988–2010 from
CRUTEM3 (solid red) and the ensemble mean temperature anomaly
from the historical scenario of the CMIP5 models (solid black).
Also shown is the linear trend for the observations (dashed red) and
the CMIP5 ensemble mean (dashed black), including ±1 standard
deviation. A double asterisk (**) indicates trends significant at the
p < 0.01 level. (b) As in (a) but for DJF-averaged observed
temperature anomalies (red) and the CMIP5 ensemble mean DJF
temperature anomalies (black). (c) The spatial pattern of linear
trends in DJF surface temperature (�C/10 yr) from CRUTEM3. In
(a) and (b), the plots of model-based anomalies are shifted vertically
so that the anomaly in 1988 matches that from the observations.

(i.e., reconstruction of the climate from 1850 to 2005 using
natural and anthropogenic forcing) to compute land surface
temperatures and Eurasian snow cover extent for October (see
table 2 for a list of the models used).

3. Results and discussion

Trend analysis of annual land surface temperatures for
the most recent two decades shows a continuation of the
aforementioned warming trend (figure 1(a)). As shown in
figure 1(b), for the same period over which annual-mean
NH temperatures have increased, boreal winter (December,
January and February (DJF)) NH winter land surface
temperatures exhibit no linear trend. The absence of a
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Figure 2. (a) JAS area-averaged (poleward of 60�N) surface
temperature anomalies (�C) from NASA MERRA. (b) September
area-averaged (poleward of 65�N) Arctic Ocean sea ice coverage
(fractional area). (c) September–October vertically integrated
(700–1000 hPa) and area-averaged (poleward of 60�N) specific
humidity (kg m�2). (d) October mean snow cover areal extent
(106 km2) over the Eurasian continent from observations (black)
and the ensemble mean from the historical runs of the CMIP5
model output (brown line). (e) The DJF average AO index
(standardized). Same-coloured dashed lines in (a)–(e) represent the
linear trend in each index. A double asterisk (**) indicates trends
that are significant at the p < 0.01 level.

Figure 3. Change in October precipitable water (kg m�2) from
various radiosonde stations based on the linear trend calculated over
the period 1990–2010. The circle bottom left in the plot is shown for
scale. Red circles indicate a positive trend and blue circles indicate a
negative trend.

warming trend in winter is especially surprising given
traditional global warming theory and the divergence of
observed winter trends from coupled model projections

3

Cohen et al. 2012 late autumn (Nov-Dec) response

not consistently located in one region (e.g., blocking
events, storms) may be obscured. However, our focus
here is not on the synoptic-scale responses but rather on
the larger spatial- and temporal-scale circulation re-
sponses, and averaging across members is necessary in
an attempt to separate the forced response from intrinsic
atmospheric variability. The Z500 responses in any given
season differ more between the two models than do the
thickness responses. This likely reflects that the Z500 is
a more ‘‘noisy’’ field with larger intrinsic variability.
There are few features of the Z500 responses that are
statistically significant in both models. Unlike the cloud
and precipitation response differences earlier however,
it is not possible to attribute these disparities in the Z500

response to differing model physics. The reason for this
is that the Z500 responses are not robust across the en-
semble members of either model. The ensemble-mean
Z500 responses mask a large degree of variability

between ensemble members for any given season and in
both models. These differences between ensemble
members can only be caused by intrinsic atmospheric
variability. It is therefore very likely that the apparent
differences between the ensemble-mean Z500 responses
from the two models are also caused in large part by
intrinsic variability masking any potential forced Z500

responses. This small ‘‘signal-to-noise’’ ratio hampers
the assessment of the Z500 (and sea level pressure; not
shown) response to Arctic sea ice loss; however, there
are a few aspects of the response that appear relatively
robust and worthy of further discussion.
Although far from identical, there is some common-

ality to the autumn and early winter circulation re-
sponses. Both models show Z500 decreases over the
North Pacific in autumn. In early winter both models
depict Z500 increases over the Arctic Ocean and/or
Greenland and Z500 decreases over the North Atlantic

FIG. 8. Ensemble-mean mean (top two rows) 700–1000-hPa thickness responses and (bottom two rows) 500-hPa geopotential height
responses in the two models. Black lines denote ensemble-mean linear responses that are statistically significant at the 95% level.
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conditions. For example, UM7.3 shows a significant
cooling response over northeastern Europe during early
winter that is not found in CAM3. Another difference
between the models is the extent to which the warming
response spreads over theArctic landmasses. In general,
the terrestrial warming responses cover a larger area in
CAM3 than they do in UM7.3. A good example is the
temperature response over sub-Arctic NorthAmerica in
early winter. CAM3 shows a broad-scale warming re-
sponse fromAlaska toQuebec. In contrast, the response
in UM7.3 is more confined to the coastal regions sur-
rounding Hudson Bay and the Beaufort Sea. Similarly,
the early and midwinter terrestrial warming responses
over northern Russia are larger in CAM3 than UM7.3.
This appears to reflect, in part, a more widespread cli-
matological surface temperature inversion in CAM3
compared to UM7.3. While UM7.3 depicts a stronger
climatological-mean inversion than CAM3 (Fig. 4),

CAM3 depicts inversions overmore extensive regions of
the high-latitude landmasses than UM7.3 (not shown).
Thermal inversions can amplify the warming response
by restricting vertical mixing, so that the warming re-
mains confined to the near-surface layers, and by re-
ducing the efficiency of infrared radiative cooling
(Bintanja et al. 2011).
Figure 6 (shading) shows the zonal-mean air temper-

ature responses. For now we focus on the responses in
the troposphere (below 350 hPa) as the stratospheric
responses will be discussed in section 3e. The charac-
teristic signature of Arctic temperature amplification—
warming that is most pronounced in autumn and early
winter and strongest in the lowermost atmosphere
(Serreze et al. 2009; Screen and Simmonds 2010a;
Serreze and Barry, 2011; Screen et al. 2012)—is clearly
seen in both models. For comparison the net ocean-to-
atmosphere heat flux responses are also shown by the

FIG. 5. Ensemble-mean (top two rows) 925-hPa air temperature responses and (bottom two rows) inversion strength (T850–1000) responses
in the two models. Black lines denote ensemble-mean linear responses that are statistically significant at the 95% level.
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T 950 hPa Z 500 hPa

models suggest most robust signals are in the 
maritime Arctic and lower troposphere Sept-
Dec; ocean-to-atmosphere heat loss, low level 
warming/moistening, increased lower 
tropospheric thickness (e.g., Screen et al. 2013)
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lessons/warnings from modelling experiments

• natural variability matters for the 
atmospheric circulation response to 
ice loss (e.g., Screen et al. 2013) 


• response is sensitive to model state 
and may exhibit non-linear behaviour 
(e.g., Petouhkov & Semenov 2010, 
Bader et al. 2011)  


• uncoupled answer (response) is not 
necessarily the same as the coupled 
answer (two-way interaction)

with altitude. Equally, the remote Tref or P responses (that
are mediated by thermo-dynamical processes) are harder to

detect than the local Tref and P responses (that are pri-
marily-driven by surface fluxes). Figure 7 suggests large

gains, in terms of reduced uncertainty, by increasing from a

small (less than 20 members) to moderate-sized (20–50
members) ensemble. Further increases in ensemble size

represent a case of ‘‘diminishing returns’’ with smaller

reductions in uncertainty per additional ensemble member.
On this basis, we argue that an ensemble size of around 50

members is desirable. This is considerably larger than the

typical ensemble size used in past studies of the atmo-
spheric response to observed Arctic sea-ice loss (e.g., 5 in

Ghatak et al. (2012) and Orsolini et al. (2012), 5 or 8 in

Screen et al. (2013), 10 in Strey et al. (2010), 15 in Porter
et al. (2012), 20 in Liu et al. (2012)).

The values of Nmin have implications not only for

modelling studies, but also for what aspects of the simu-
lated Arctic sea-ice response may be observable in the real

world. Since each ensemble member is 1-year of simula-

tion, Nmin can also be thought of as approximate measure of
the minimum number of years required to detect a signif-

icant response due to Arctic sea-ice loss, assuming the rate

of loss is linear. The differences in prescribed boundary
conditions between CTRL and PERT have, in reality,

occurred over a 31-year period (1979–2009). Assuming

that the models are realistic in their depiction of the forced
response and AIV, a Nmin of 31 or less suggests that the

simulated response should be observable in nature over the

period 1979–2009. Conversely, a Nmin of greater than 31

suggests that more than 31 years are required to separate
the forced response from AIV and therefore, the response

to past sea-ice loss would not be expected to be detectable

in observed records. Accordingly, we argue that the sim-
ulated local Tref and P responses to Arctic sea-ice loss

should be detectable, but that the atmospheric circulation

(e.g., SLP, 10 m wind), upper-level (e.g., Z500, T500, U250,
V250) and remote responses may be partially or wholly

masked by AIV. In practise, the detection and importance
of the atmospheric impacts of sea-ice loss not only depend

on the relative magnitudes of the sea-ice forced change

compared to AIV, but also on the relative magnitudes of
sea-ice forced response to other forced responses.

Figure 9a, d shows observed (from ERA-Interim; Dee

et al. 2011) trends in Tref over the period 1979–2009 for
SON and DJF, respectively. These are highly similar to the

simulated Tref responses to Arctic sea-ice loss (Fig. 2),

suggesting that the Tref response is indeed detectable,
consistent with previous studies (Screen and Simmonds

2010a, b; 2012). Figure 9b, e shows observed trends in

P for SON and DJF, respectively, taken from the Global
Precipitation Climatology Project (GPCP) data set (Adler

et al. 2003). These can be compared to the simulated

P responses in Fig. 4. Although the moderate values of
Nmin in Fig. 4 suggested that the local P response may be

detectable, the observed trends are not in agreement with

the simulated P responses. We propose that there are two
likely reasons for this apparent disparity. One reason is that

detection of the atmospheric impacts of sea-ice loss not
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Fig. 8 Probability distribution functions (PDF) for the winter Arctic-
mean sea level pressure (SLP) responses in sub-ensembles of varying
size. Each PDF is constructed from 100,000 unique combinations sub-
sampled from the 60-member CAM ensemble. For example, the blue
line represents sub-ensemble means for 100,000 unique combinations
of 20 CAM members sampled from the full set of 60 CAM members
[see text for further details]
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Fig. 9 Observed trends in autumn a near-surface temperature (Tref),
b precipitation (P) and c sea level pressure (SLP) for the period
1979–2009. Precipitation trends are expressed as percentages relative
to the climatological-means. d–f As (a–c), but for winter. Tref and SLP
data are from the ERA-Interim reanalysis and P data are from the
GPCP product

J. A. Screen et al.
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uncoupled (response), coupled (interaction)
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surface heat flux variability:  
pattern, sign, relationship to ice and temperature 

Barents sea ice heat flux EOF1 heat flux EOF2

� � � �
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Barents sea ice heat flux EOF1 heat flux EOF2

surface heat flux variability:  
pattern, sign, relationship to ice and temperature 
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future:  
adding uncertainties to coupled ice-atmosphere-ocean interactions

There are 3 categorical sources of uncertainty regarding the future evolution of climate:!
! a) Amount of external (greenhouse gas) forcing applied!

! b) Model-to-model (physical parameterization) uncertainty!

! c) Coupled internal variability 
(Tebaldi & Knutti, 2007; Hawkins & Sutton, 2009; Deser et al., 2012) 
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3 categorical sources of uncertainty in the future evolution of Arctic sea ice:

 a) Amount of external (greenhouse gas) forcing applied 

 b) Model-to-model (physical parameterization) uncertainty 

 c) Coupled internal variability 

!
!
!
!
!
!
!
!
!
!

Different external forcing —> different Arctic sea ice (a) 
!

Substantial model-to-model uncertainty (b) 
 - compare across RCP8.5 & RCP2.6, “chosen” (3/5) vs. ensemble (29/37)  
!
Is internal variability (c) important?

future: adding uncertainties

IPCC 2014

Fig. SPM 7b
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3 categorical sources of uncertainty in the future evolution of Arctic sea ice:

 a) Amount of external (greenhouse gas) forcing applied 

 b) Model-to-model (physical parameterization) uncertainty 

 c) Coupled internal variability

future: adding uncertainties

FIG. 1. (top) Time series of the ensemble mean (black line), ensemble range (gray shading), and the individual
ensemble members with the smallest (blue lines) or largest (red lines) 2020–59 loss in Arctic (top left) September sea
ice EXT and (top right) July–November (JASON) sea ice VOL. Histograms to the right of the top panels display the
2020–59 ice loss trend distribution on the same vertical axis as the time series. Two small green dots indicate the
ensemble-mean ice loss trends in EXT and VOL. (middle),(bottom)Maps show the 2020–59 (left) ice concentration
or (right) thickness trends for the individual ensemble members with the largest and smallest trends in ice EXT or
VOL loss, respectively. The largest (smallest) trend in September ice EXT loss of 5.7 3 106 km2 (2.0 3 106 km2) is
experienced by ensemble member 9 (13), as indicated. The largest (smallest) trend in JASON ice VOL loss of 193
103 km3 (7.03 103 km3) is experienced by ensemble member 6 (13), as indicated. A scale for the 2020–59 trend maps
in September ice concentration (%) and JASON ice thickness (m) is indicated alongside the colorbar.

15 JANUARY 2014 WETT S TE IN AND DESER 531

- Identical external forcing (BC’s identical)!
- 39 realizations from one (dated) fully-coupled model: !  !
  CCSM3 at T42 resolution!
- Only difference: initial condition in the atmosphere                                !
  —> internal variability is important 

Figure 1:

Wettstein & 
Deser, 2014
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3 categorical sources of uncertainty RE: future of Arctic sea ice:

  a) Amount of external (greenhouse gas) forcing applied 
  b) Model-to-model (physical parameterization) uncertainty 
  c) Coupled internal variability

future: adding uncertainties to complex atmosphere-ice interactions

39 trends in Arctic ice loss!   39 trends in tropical Pacific Tref!
Barotropic signature, (strong) link to tropical Pacific variability!
—> fully-coupled internal variability leads to atmos. “forcing”!
!

FIG. 1. (top) Time series of the ensemble mean (black line), ensemble range (gray shading), and the individual
ensemble members with the smallest (blue lines) or largest (red lines) 2020–59 loss in Arctic (top left) September sea
ice EXT and (top right) July–November (JASON) sea ice VOL. Histograms to the right of the top panels display the
2020–59 ice loss trend distribution on the same vertical axis as the time series. Two small green dots indicate the
ensemble-mean ice loss trends in EXT and VOL. (middle),(bottom)Maps show the 2020–59 (left) ice concentration
or (right) thickness trends for the individual ensemble members with the largest and smallest trends in ice EXT or
VOL loss, respectively. The largest (smallest) trend in September ice EXT loss of 5.7 3 106 km2 (2.0 3 106 km2) is
experienced by ensemble member 9 (13), as indicated. The largest (smallest) trend in JASON ice VOL loss of 193
103 km3 (7.03 103 km3) is experienced by ensemble member 6 (13), as indicated. A scale for the 2020–59 trend maps
in September ice concentration (%) and JASON ice thickness (m) is indicated alongside the colorbar.

15 JANUARY 2014 WETT S TE IN AND DESER 531 2 general forms of atmos.-sea ice interaction:

 1) atmospheric flow can drive sea ice change 
  - atmospheric “forcing” of sea ice loss 
 2) atmospheric flow can react to sea ice loss 
  - true atmospheric “response” to sea iceFigure 12: Wettstein & Deser, 2014
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experienced by ensemble member 9 (13), as indicated. The largest (smallest) trend in JASON ice VOL loss of 193
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15 JANUARY 2014 WETT S TE IN AND DESER 531 2 general forms of atmos.-sea ice interaction:

 1) atmospheric flow can drive sea ice change 
  - atmospheric “forcing” of sea ice loss 
 2) atmospheric flow can react to sea ice loss 
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Figs. 12 & 13: 

Deser et al., 2010

Z response 
to prescribed 
21st century 

Arctic sea 
ice loss

Baroclinic  
T/Z response 

at 90E

AGCM experiments to ice loss: !
strictly the atmospheric “response”!

!

see also:

Magnusdottir et al., 

2004; Kvamstø et 
al., 2004;  Seierstad 

& Bader, 2009
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summary

even if we have a perfect model with perfect ice forcing, we would 
also need to consider: 


• two-way interaction (O/I→A & A→O/I)


• natural variability in both sea ice and atmosphere 


• uncertainty in external forcing


