Response to Sudden Sea Ice Loss in CCSM4

Russell Blackport & Paul J. Kushner Department of Physics, University of Toronto

- Motivation & methods
- Equilibrated response in circulation, variability
- Transient response

Arctic-Midlatitude System: Big Picture View

Arctic-Midlatitude System: Sea Ice Focus

Sea Ice Loss: A Range of Teleconnections

Screen et al. 2013, Liu et al. 2012, Deser et al. 2010 Peings & Magnusdottir 2013, Petoukhov & Semenov 2010 ...

Motivation & Approach

- Our view on Arctic/midlatitude linkage discussion:
 - Important to separate sea ice loss from broader Arctic Amplification (see Deser et al. 2010, 2014).
 - There is an ongoing need for idealized perturbation experiments.
- Response to sea ice loss remains uncertain.
- We perturb sea ice albedo in a coupled model (see Scinocca et al. 2002, Deser et al. 2014)
 - Easily reproduced, energetically self-consistent, robustly sampled.
 - Interested in adjustment to equilibrium and robustness of transient response.

Simulation Design

- NCAR CCSM4, 1° (U of Toronto SciNet).
- Multicentury control.
- Adjust r_snw,r_ice,r_pnd to reduce sea ice albedo.
- Perturbation runs:
 - 1 x 800 y
 - 2 x 350 y
 - 5 x 50 y
- "Equilibrated" phase: Years 400-800
- "Transient" phase: Years 1-50

Wintertime Warming

• Global warming response associated with imposed sea ice loss (Deser et al. 2014).

Control and Equilibrium States

- Sea ice area loss is focussed in summer, as expected.
- Considerable reduction in average thickness and volume (not shown) all year.

Surface Energy Budget

- Turbulent and longwave fall/winter fluxes increase into atmosphere.
- Similar to but larger response than prescribed sea ice experiments.
- Energy budget response coherent with Arctic Ocean region surface temperature response.
- Continental temperatures reflect Arctic and global warming.

Reduced Temperature Variability

- Striking reduction in variability in surface temperature (s(T), RMS of daily T anomalies) over Arctic Ocean and to a lesser extent continents.
- Strongest loss of variance in seasons of strongest warming.
- Reflects transition to maritime climate, stronger coupling to ocean, even in spring.

Reduced variability on sub-seasonal and interannual timescales.

Change in s(T) (SON) Interannual Subseasonal

A Weak Circulation Response

- Warming confined to Arctic lower troposphere.
- Polar winds slightly weakened.
- Tropical response influenced by global warming.
- No polar stratospheric response once sufficient averaging is done.

Mixed Response in Atmospheric Variability

- Reduced surface temperature variability accompanied by mixed response in SLP variability
- These both contribute to changes in mid tropospheric variability.
- Variability over continents is reduced.
- Maps (not shown) show a highly structured pattern of change.

Mixed Response in Atmospheric Variability

- Meridional meander amplitude A_M (Francis & Vavrus 2012, Screen & Simmonds 2013) increases.
 - Reflects polar amplification of global warming?
- Eddy amplitude(Fourier amplitude) A_Z generally decreases. Partially agrees with observed trends.
- But wintertime Wave-1 A_M and A_Z both increase.

Variability of Transient Response (Years 1-50)

Run #4 shows Warm Arctic & Warm Siberia (no coastal high)!

Variability of Transient Response

- WACS Pattern
 Response not consistent
- Aleutian low/Eurasian coastal high SLP is fairly robust.
- In runs with a high Eurasian SLP response, often obtain Siberian cooling. But this is not guaranteed.

Adjustment to Equilibrium

 Coastal high is a feature of transient adjustment, but WACS pattern in transient response is subtle.

Conclusion

- Motivated by contradictory results of recent studies, we analyzed the response to idealized sea ice loss in a relatively simple coupled model framework.
 - Tropospherically trapped Arctic response with weak global warming (Deser et al. 2014).
 - Very weak circulation response.
 - Mixed changes in variability: suppressed surface temperature variability and wave amplitudes except planetary Wave 1, increased meandering consistent with Arctic Amplification.
 - Highly variable multidecadal adjustment.
- Would idealized perturbations in coupled models be worth investigating more broadly?