SMHI / Rossby Centre

Decadal Climate Prediction at SMHI

Torben Koenigk, Mihaela Caian, Klaus Wyser

Potential Predictability in EC-Earth

The Decadal Prediction System

Results from decadal hindcast prediction

Results from real-time prediction

ENSO: seasonal time-scales

Land-surface processes: soil moisture, vegetation

Persistence: e.g. SST, ice, snow anomalies affect the atmosphere aloft. Via teleconnection processes remote regions could be affected.

Advection of SST and ice anomalies: seasonal to interannual time-scales

Decadal processes: e.g in the Arctic; variation of sea ice parameters on decadal time-scale, cyclonic and anticyclonic circulations regimes, AO/NAO, PDO

Multi-decadal variations in the ocean: MOC, heat transports

(Solar cycle)

(Trends)

Potential Predictability: the upper limit of predictability

Are real world predictions meaningful? Can predictions be further improved?

How?

Try to predict the model "reality":

Perform ensemble simulations from different conditions of the models ctrl-run.

Members use the same initial conditions except for a small perturbation (unrealistic small).

Under the assumption that the model realistically simulates real climate, the model potential predictability provides the limit of real world predictability.

But:

Potential predictability depends on the model.

 \rightarrow The upper limit of real world predictability might be higher (or lower).

Prognostic Potential Predictability

Model

EC-Earth: V2.1 IFS (cycle 31r1): T159/L62 NEMO2.0/ LIM2: ORCA1/L42

Ctrl-run

400-year simulations with present-day conditions **Ensemble experiments**

9 ensembles with 6 members each.

$$PPP(t) = 1 - \frac{Var_{ens}(t)}{Var_{ctrl}}$$

PPP \rightarrow 1: perfect predictability (Variance among members small compared variance in ctrl-run) PPP \rightarrow 0: no predictability (Variance among members of same size than variance in ctrl-run)

Interannual potential predictability

SMHI

Decadal Potential Predictabilty

Decadal correlation MOC – T2m, sea ice SMH

Model: EC-Earth

EC-EARTH v2.3 (CMIP5-version)

(ongoing predictions with EC-Earth3 in EU-project SPECS)

Method: Anomaly initialization for ocean and ice

Initial conditions:

- **Ocean:** Nemovar-S4 initial day anomaly to Nemovar-S4 1960-2005 climatology, added to EC-Earth climatology, for: <u>u,v,t,s</u>, 1960-2005
- **Ice:** Forced ocean/ice run (NEMO/LIM2) day anomaly to its 1960-2005 climatology, added to EC-Earth climatology for: <u>Ice</u> <u>thickness, ice concentration, temperature, velocity, snow</u>

Atmosphere: ERA analysis

Perturbations: different members of NEMOVAR; time-lag

Start dates: 1 Nov, every year, 1960-2005

Hindcast and real-time decadal forecast SMH

How good are decadal forecasts?

Evaluate hindcasts (COMBINE project, CMIP5 simulations) Global mean values

EC-Earth: Ice predictions

EC-Earth

Real-time predictions

SMHI is contributing to multi-model decadal prediction initiative:

http://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-range/decadal-multimodel

2012 predictions for 2013 surface temperature

Real-time predictions: T, year 1-5

2012 predictions for 2013-2017 surface temperature

http://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-range/decadal-multimodel

Current issues on decadal prediction

a) Lack of observations,

-especially in the ocean, are limiting forecast verification as well as development

and testing of initialization and prediction systems.

It is crucial to maintain and enhance the existing observing systems.

b) Initialization, process understanding and new sources of predictability

- processes not yet initialized: sea-ice (thickness), frozen soil, ocean below sea-ice, snow cover, soil moisture, stratospheric process, land surface and vegetation;

- Improved initialization, consistent, starting in right phase, correcting for position, variance mismatch

- skill may depend on initial state (e.g. AMOC+ more predictable state)

- predictability under climate change

c) Ensembles

- large number of ensemble members needed
- Realistic initial perturbations

d) Reducing model uncertainty:

Systematic errors in models affect predictions. Need to identify, understand and reduce these errors.

Higher resolution is needed and parameterizations and coupling of additional climate subsystems should be improved.

e) Output analysis

- appropriate bias correction and decadal metrics

f) Societal usefulness of decadal climate predictions should be assessed.

Real-time predictions: T, year 6-10 SMH

Fig. 7 Impact of initialization (as Fig. 6) on forecasts of the period 2016-2020

Smith et al. 2013, Figure 7

PPP for regional means, T2m, y1-10 and variances in CTRL-runs

Region	PPP CTRL/ Var Ctrl-v2.1	PPP ALB /Var Alb
North Atlantic (10-60W,30-60N)	0.85 / 0.057	0.83 / 0.037
Europe (0-60E,30-60N)	0.72 / 0.041	0.78 / 0.037
Africa (10W-40E, -30S–30N)	0.57 / 0.004	0.26 / 0.005
S. Asia (60-130E, 10-40N)	0.71 / 0.005	0.42 / 0.004
N Asia (60-150E, 40-70N)	0.39 / 0.062	0.58 / 0.055
N America (70-150W, 30-70N)	0.42 / 0.015	0.45 / 0.009
S America (40-80W, 50S-10N)	0.11 / 0.003	-0.13 / 0.002
Australia (110-155E, 40S-10S)	0.27 / 0.009	0.03 / 0.005
Antarctic (0-360E, 90S-70S)	0.35 / 0.039	0.16 / 0.025
Arctic (0-360E, 70-90N)	0.77 / 0.264	0.76 / 0.189
Labrador Sea (48-65W,45-65N)	0.87 / 0.369	0.79 / 0.161
global	0.85 / 0.004	0.67 / 0.004

PPP increases if we average T2m over larger regions but decadal variance is small except for high northern latitudes.

Anomaly correlation Temperature JJA

SMHI

Belkin et al. 2004

Multi-decadal SST-variations

Arctic 2m -temperature

Sea ice anomalies in the Barents Sea

Composite analysis: 500-year pre-industrial ctrl with ECHAM5/ MPI-OM

Annual mean response 2m air temperature, 850 hPa temperature and precipitation at lag 0, 1, 2 after high Barents Sea ice volume. Significant regions are coloured.

Koenigk et al. 2009

Potential predictability: sea ice thickness

Top: Predictability of annual mean sea ice thickness in the first two years after initialization in January.

Bottom: Gain of predictability.

Koenigk et al. 2009