

Seasonal-to-decadal prediction with the Norwegian Climate Prediction Model

COUNILLON F., BETHKE I., KEENLYSIDE N., WANG Y. , BENTSEN M., BERTINO L., ZHENG F.

WORKSHOP ON NAS PREDICTABILITY 13/06/2014

A HAVFORSKNINGSINSTITUTTET

NorCPM Norwegian Climate Prediction Model

NorCPM = NorESM + ocean data assimilation (EnKF)

Objectives:

- •Long term reanalysis
- •Seasonal-to-decadal prediction
- •Regional focus into the Nordic Seas

Outlines:

- •Twin-experiment:
 - Assimilate monthly SST
 - •A numerically efficient version of NorESM (T31, 3.6° for ocean)
- •Test with real observation
 - •Assimilate monthly SST (1980-2006)
 - •2° ocean tripolar grid + atmophere F19

Ensemble Kalman Filter (EnKF)

Sequential Monte-Carlo method with propagation and correction step

Bjerknes Centre

- Forecast = Ensemble mean, Forecast uncertainty = ensemble std deviation
- Ensemble covariance used to update the full water column from the obs (e.g., SST)
 - More information extracted from sparse observations

Twin prediction experiment

Truth (synthetic observations)

covers 110 years with fixed pre-industrial forcing

EnKF-SST (initialized, assimilation runs)

- 10 assimilation/prediction cycles
- 30 members

Free (no-assimilation, lower benchmark)

• Same initial ensemble (30 members)

Perfect (upper benchmark)

- 10 prediction cycles (30 members)
- Initial conditions for TRUTH (ice,atm,ocn,Ind) + small pert. SST

Global skill assessment: Upper ocean temperature

Bjerknes Centre

RMSE calculated over the full model domain (averaged over the 10 prediction cycles)

For all model variables at 1-year lead average; 2-5 lead year average

•Analyze reduction of RMSE in EnKF-SST relative to Free

•Compare the improvements relative to **Perfect**

Global skill assessment

	$\mathrm{RMSE}_{\mathrm{FREE}}$		RRM	$\mathrm{ISE}_{\mathrm{EnKF}}(\%)$
Prediction year	$\overline{1 Y}$	$\overline{2-5 \mathrm{Y}}$	$\overline{1 Y}$	$\overline{2-5 \mathrm{Y}}$
T2M (°C)	0.55	0.37	7	4
Precip (mm/day)	0.48	0.26	11	5
icec $(\%)$	0.8	0.6	4	5
sst ($^{\circ}$ C)	0.3	0.2	21	8
sss (psu)	0.1	0.09	15	4
$T[0 225](^{\circ}C)$	0.21	0.19	22	5
$S[0 \ 225](psu)$	0.05	0.05	18	6
$T[225 500](^{\circ}C)$	0.16	0.16	11	4
S[225 500](psu)	0.03	0.03	11	7
$T[500 \ 1050](^{\circ}C)$	0.12	0.12	3	0
$S[500 \ 1050](psu)$	0.02	0.02	5	4

Global skill assessment

	$RMSE_{FREE}$		RRM	$ISE_{EnKF}(\%)$
Prediction year	$\overline{1 Y}$	$\overline{2-5 \mathrm{Y}}$	ĪY	$\overline{2-5 \mathrm{Y}}$
T2M (°C)	0.55	0.37	7	4
Precip (mm/day)	0.48	0.26	11	5
icec $(\%)$	0.8	0.6	4	5
sst ($^{\circ}$ C)	0.3	0.2	21	8
$\mathrm{sss}~\mathrm{(psu)}$	0.1	0.09	15	4
$T[0 225](^{\circ}C)$	0.21	0.19	22	5
${ m S}[0225]({ m psu})$	0.05	0.05	18	6
$T[225 500](^{\circ}C)$	0.16	0.16	11	4
${ m S}[225500]({ m psu})$	0.03	0.03	11	7
$T[500 \ 1050](^{\circ}C)$	0.12	0.12	3	0
$S[500 \ 1050](psu)$	0.02	0.02	5	4

EnKF-SST reduces RMSE compare to **Free**:

- Improvement gets smaller with depths for T and S
- Improvements for atmospheric variables and ice concentration

Global skill assessment

	$RMSE_{FREE}$		RRM	ISE	$E_{\rm EnKF}$	%)
Prediction year	$\overline{1 Y}$	$\overline{2-5 \mathrm{Y}}$	ĪY		$\overline{2-5 \mathrm{Y}}$	
T2M (°C)	0.55	0.37	7		4	
Precip (mm/day)	0.48	0.26	11		5	
icec $(\%)$	0.8	0.6	4		5	
sst (°C)	0.3	0.2	21		8	
sss (psu)	0.1	0.09	15		4	
$T[0 225](^{\circ}C)$	0.21	0.19	22		5	
$S[0 \ 225](psu)$	0.05	0.05	18		6	
$T[225 500](^{\circ}C)$	0.16	0.16	11		4	
S[225500](psu)	0.03	0.03	11		7	
$T[500 \ 1050](^{\circ}C)$	0.12	0.12	3		0	
$S[500 \ 1050](psu)$	0.02	0.02	5		4	

EnKF-SST reduces RMSE compare to **Free**:

- Improvement gets smaller with depths for T and S
- Improvements for atmospheric variables and ice concentration

Global skill assessment:

Ocean state summary

	$\mathrm{RRMSE}_{\mathrm{EnKF}}(\%)$			RRM	SE_{PF}	ERFECT	·(%)	
Prediction year	$\overline{1Y}$		$\overline{2-5 \mathrm{Y}}$		$\overline{1Y}$		$\overline{2-5 \mathrm{Y}}$	
T2M ($^{\circ}C$)	7		4		13		7	
Precip (mm/day)	11		5		19		10	
icec $(\%)$	4		5		29		19	
sst ($^{\circ}C$)	21		8		39		18	
$\mathrm{sss}~\mathrm{(psu)}$	15		4		56		30	
$T[0 225](^{\circ}C)$	22		5		54		25	
m S[0~225](psu)	18		6		73		45	
$T[225\ 500](^{\circ}C)$	11		4		74		51	
${ m S}[225500]({ m psu})$	11		7		84		66	
$T[500 \ 1050](^{\circ}C)$	3		0		85		72	
$S[500 \ 1050](psu)$	5		4		92		84	

Moderate improvement of **EnKF-SST** compare to **Perfect**

→SST is not sufficient to initialize the full system

Bjerknes Centre Spatial distribution of the benefits 2—5 lead year

RMSE_{Free} - RMSE_{EnKF} averaged over 10 cycles (red means improvement)

Bjerknes Centre Spatial distribution of the benefits 2—5 lead year

RMSE_{Free} - **RMSE**_{EnKF} averaged over 10 cycles (Red means improvement)

Bjerknes Centre Spatial distribution of the benefits 2—5 lead year

RMSE_{Free} - RMSE_{EnKF} averaged over 10 cycles (Red means improvement)

AMOC at 48°N

Twin experiment summary

Conclusion:

•EnKF-SST reduces RMSE for all variables (T,S, icec, T2M, precip) up to few years

Prediction in the North Atlantic stand out: skill for Nordic Seas upper ocean heat content up to 10 years almost comparable to Perfect
Skills for AMOC and SPG but seems beneficial to use a longer analysis cycle

But:

Drift at intermediate depth T & S → hard to use a longer analysis period >10-year ?
Improvements are moderate compare to Perfect

 \rightarrow More observations should be assimilated

F. Counillon, I. Bethke, N. Keenlyside, M. Bentsen, L. Bertino, F. Zheng, Seasonal-to-decadal prediction with the Ensemble Kalman Filter and the Norwegian Earth System Model: a twin experiment, Tellus A, 2014

NorCPM A first test with real observation

•Analysis for the period 1980-2005 (cover the SPG shift) •5 predictions: 1990, 1992, 1994, 1995, 1996

Uses 2° ocean tripolar grid + atmophere F19 of NorESM
Assimilate monthly SST anomaly wrt period (1980-1999)

•Observation HadISST2 SST (1850-2007)

•Validate the system against:

- •SPG index
- •Nordic Sea Altantic layer water properties

SST Observation (HadISST2)

Assimilation statistics

SPG index Prediction

Prediction starting in 1996

simulated

observed

Mork et al., in prep

0.19) Salinity anomaly (r=

1980

Conclusion

Primary test with real SST observations for 1980-2006 completed
Good match with SPG index, Nordic Sea Atlantic layer water property
Poor skill in prediction mode (SPG and Nordic Sea Atlantic Layer)
A bit unclear if this is caused by:
Assimilation imbalance ?

• Poor model skill ?

Assimilation in a lagrangian vertical coordinate system found to cause a small drift

➔investigating assimilation drift using a idealized 1-column model seems to have identified a configuration that suppress DA drift

Global mean SSH

Assimilation creates a increase MSSH drift

response to a drift in temperature and salinity caused by assimilation

simulated

1980

Nordic Sea Atlantic Layer

Nordic Sea Atlantic Layer **1990 Prediction**

Nordic Sea Atlantic Layer 1992 Prediction

Nordic Sea Atlantic Layer 1994 Prediction

Nordic Sea Atlantic Layer 1996 Prediction

Assimilation drift

Calculate the model drift (steric) over the period 1980-2005

	Global T	Global S	Global SSH
FREE			2.6
ASSIM			3.5
OBS			2.86 +-0.8

Drift caused by assimilation in a lagrangian vertical coordinate system →investigating assimilation drift using a idealized 1-column model Identified model state vector which would suppress model drift

