

Capturing shifts of the Atlantic multidecadal variability in the Met Office Decadal Prediction System

Jon Robson

j.i.robson@reading.ac.uk

🎽 @JonIRobson

Thanks to Rowan Sutton and Doug Smith

Atlantic Multidecadal Variability (AMV) and its climate impacts

JJASON Temp Yrs 1-5 (DePreSys)

(from Smith et al, 2010)

JJASON Temp Yrs 1-5 (DePreSys – NoAssim)

⁽from Smith et al, 2010)

- Only skill in a few regions
 - Mainly in the North Atlantic – Why?
 - Is the skill just persistence?
- Also, there is much less evidence for initialisation improving predictions over land – A surprise?

AMV shifts: case studies for prediction

 We have focused on understanding the observed shifts in Atlantic SST

 We have focused on understanding the observed shifts in Atlantic SST

AMV shifts: case studies for prediction

 We have focused on understanding the observed shifts in Atlantic SST

Were these events predictable?

Why?

Experiments and data

- We will be looking at predictions made with DePreSys PPE
 - Based on HadCM3 (1.25° Ocean, 3.75 x 2.5° Atmosphere)
 - 9 member perturbed physics ensemble
 - Uses **anomaly assimilation** for 3D ocean T, and S, and atmospheric U,V,T and MSLP
 - Hindcasts start every November between 1960-2005
 - Forced with historical anthropogenic, and projected natural forcings
- Comparison ensemble that does not assimilate observed information (NoAssim PPE)
- Compare the predictions with observations
 - Met Office ocean analysis
 - HadISST
 - CRU TS 3.0
 - HadSLP

Mid 1990s North Atlantic warming

- Model experiments suggest warming was largely due to ocean heat transport changes
- A lagged response of the buoyancy forced circulation to the positive NAO that peaked in the late 1980s and early 1990

See Robson et al, 2012a,b; Yeager et al, 2012

Mid 1990s North Atlantic warming

- Model experiments suggest warming was largely due to ocean heat transport changes
- A lagged response of the buoyancy forced circulation to the positive NAO that peaked in the late 1980s and early 1990

See Robson et al, 2012a,b; Yeager et al, 2012

- There are problems for examining the skill of surface variables
 - Initial shocks and biases
 - Limited number of hindcasts & ensemble members. i.e. signal to noise
- Is there an impact of initialisation in DePreSys?

- There are problems for examining the skill of surface variables
 - Initial shocks and biases
 - Limited number of hindcasts & ensemble members. i.e. signal to noise
- Is there an impact of initialisation in DePreSys?

- Compare anomalies from many predictions made before and after the warming event
 - No need to define a climatological period, or remove mean bias

- There are problems for examining the skill of surface variables
 - Initial shocks and biases
 - Limited number of hindcasts & ensemble members, i.e. signal to noise
- Is there an impact of initialisation in DePreSys?

Examining difference relative to NoAssim removes forced trend

Impact of initialisation = $\Delta DeP - \Delta NoA$

Focus on years 2-6, comparing with detrended observations

Predictions of SST

Predictions of SST

Predictions of SST

INSTITUTE

Surface climate - MAM

Surface climate - JJA

Predictions of the 1960s cooling

Predictions of the 1960s cooling

SPG energy budget

 $\Delta E = H_0 - H_A$

H_o = Ocean heat transport convergence

And

H_A = Atmospheric heat loss integrated over the latitude of the subpolar gyre (50N-65N)

SPG energy budget

1960s surface climate impact

1960s surface climate impact

Conclusions

- Results from DePreSys suggests that:-
 - The shifts in AMV in the 1960s and 1990s could have been predicted in advance there is skill *beyond persistence*
 - Both events were primarily caused by changes in ocean circulation and ocean heat transport convergence anomalies in the subpolar gyre
 - The AMOC played a key role in both shifts
 - The changes in ocean temperature also led to predictable impacts on surface climate *even over land*
- The results are therefore encouraging for the prospects of predicting future changes in North Atlantic climate

Conclusions

INSTITUTE

- Results from DePreSys suggests that:-
 - The shifts in AMV in the 1960s and 1990s could have been predicted in advance there is skill *beyond persistence*
 - Both events were primarily caused by changes in ocean circulation and ocean heat transport convergence anomalies in the subpolar over
 - The AMOC played a key role in bot
 - The changes in ocean temperature surface climate *even over land*
- The results are therefore encouraging f changes in North Atlantic climate
- BUT, Only two case studies....
 with a low-resolution model

a Simulated density change

Model relationship suggests we should expect a further weakening of the AMOC **Excellent opportunity to test the understanding of the AMOC and, importantly, its role in climate**

Thanks!

Historical changes in the Subpolar gyre

Ocean only experiments

MICOM 2.4° resolution, ~150km in the Atlantic
 Historical experiments

Robson et al, 2012, JCLIM

• **CONTROL** - Ocean forced with daily fluxes taken from NCEP reanalysis

Ocean only experiments

Model only captures evolution of heat content anomalies when forced with changes in **buoyancy fluxes.**

Changes in ocean circulation are the key driver

e) WIND 1986-1990

f) WIND 1991-1995

g) WIND 1996-2000

h) WIND 2001-2005

e) EN3 1986-1990

-0.75 -0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.75

Ocean only experiments

Model only captures evolution of heat content anomalies when forced with changes in **buoyancy fluxes.**

Changes in ocean circulation are the key driver

Role of ocean heat transport changes

Initialisation of strong AMOC key to predict the warming

November 1994 hindcast

Mean DePreSys PPE – NoAssim PPE

DJF DEPRESYS DIFF t = 1

DJF DEPRESYS DIFF t = 2

DJF DEPRESYS DIFF t = 3

MAM SAT lyr

MAM DEPRESYS DIFF t = 0

MAM DEPRESYS DIFF t = 1

MAM NOASSIM DIFF t = 1

MAM DEPRESYS DIFF t = 2

MAM NOASSIM DIFF t = 2

MAM NOASSIM DIFF t = 0

MAM DIFF t = 0

MAM DIFF t = 2

MAM DEPRESYS DIFF t = 0

MAM DEPRESYS DIFF t = 1

MAM DEPRESYS DIFF t = 2

MAM NOASSIM DIFF t = 0

MAM NOASSIM DIFF t = 1

MAM NOASSIM DIFF t = 2

MAM DIFF t = 0

MAM DEPRESYS DIFF t = 0

MAM DEPRESYS DIFF t = 0

MAM DEPRESYS DIFF t = 2

MAM NOASSIM DIFF t = 0

MAM NOASSIM DIFF t = 0

MAM NOASSIM DIFF t = 2

MAM DIFF t = 0

SPG energy budget

 $\Delta E = H_0 - H_A$

H_o = Ocean heat transport convergence

And

H_A = Atmospheric heat loss integrated over the latitude of the subpolar gyre (50N-65N)

Ocean heat transport

Weak ocean circulation \rightarrow weak northward heat transport

But why a weak AMOC?

1200-3000m Density anomalies

1200-3000m Density anomalies

1200-3000m Density anomalies

Prediction of the GSA

Surface climate impact

