

Labrador Sea convection blows life to the Northeastern Atlantic Work in progress

Hjálmar Hátún, Katja Lohmann and others

Keywords:

Ocean-shelf exchange, sub-decadal variability,

predictability, altimetry metric,

Calanus finmarchicus

Max-Planck-Institut eteorologie

Outline

- 1. The subpolar gyre epicenter a main food source
- 2. Mixed Layer Depth (MLD) a critical parameter
- 3. Remote driver \rightarrow advection \rightarrow predictability
- 4. Altimetry, a useful metric

Zooplankton (Calanus finmarchicus) flushes from epicenters

Winter migration of seabirds (kittiwakes)

(June 2009 to July 2010)

Zooplankton on the south Iceland shelf

NB: Mainly Calanus finmarchicus

Shelf and oceanic zooplankton co-vary

MPI-OM

- MPI ocean model forced with NCEP/NCAR reanalysis fields (1948 to 2010)
- Northern pole located over south Greenland
- Horizontal resolution of 15-25 km in the Irminger Sea

Altimetry and simulated SSH - a validation

Simulated March MLDs N. Irminger Sea (35-30°W, 61-63°N)

Nutrients (pre-bloom)

A worrysome decline might changephytoplankton communities ☺like in Rey (2012)

Pulses of nutrients during deeper mixing

Atmospheric forcing: wind stress curl Corr. coeff 64 0.6 62 0.4 60 Irminger Gyre 0.2 58 Latitude 56 54 52 -0.3 50 -0.5 48 MLD (in North IrB) vs. wsc Jan-April L_{0.7} -55 -45 -35 -15 -60 -50 -40 -30 -25 -20

Longitude

Predictability Intra-seasonal to interannual

Altimetry: a good 'MLD-meter' (in some regions)

Gyre dynamics and the pulses

Gyre dynamics and the pulses

Messages

- On-shelf zooplankton abundance is closely linked to concentrations of *C. finmarchicus* within the subpolar gyre
- The variability is closely linked to the winter mixed layer depths in the Irminger Sea
- Deep-water formation in the Labrador Sea, and advection towards Iceland, induces a potential for prediction (0.5 to 1.5 years ahead)

Nutrient decline

Blows from the Lab Sea

Altimetry and simulated steric (dynamic) height

3. Altimetry – a useful metric

Nutrient decline

4. Nutrient decline

Nutrient decline

Seasonal predictability

Messages

- Convective activity in the Irminger-Labrador Seas
 →
- More subarctic water
- More nutrients
- More zooplankton (*C. finmarchicus*)
 - Which advects towards and onto the Iceland shelf
 - After a 0.5 1.5 year time-lag
 - Fueling higher trophic levels
- Altimetry (SSH) is a useful metric for this process

Silikat konsentrasjónir á 50 m dýpi

(kelda: WOA09)

And Faroe cod

And Faroe cod

Sea surface height in the Northern Irminger Sea

Surface salinities: Observed (CLISAP) and simulated

Altimetry and simulated mixed layer depths (MLD)

Simulated sea surface height and mixed layer depths (MLD)

Sub-decadal pulses

Sea surface height:

Sub-decadal oscillations (SDO)

Spatial pattern

Vestmannaeyjar archipelago

Figure 4. The Puffin catch index (black) compared with The Subpolar Gyre index 5 years earlier (dotted red). There was an overall positive correlation (r=0.42, n=42) between the two indices. A higher correlation was obtained when data from five out of six islands are underlying the Puffin catch (r=0.64, n=29)

Freydís Vigfúsdóttir, Yann Kolbeinsson and Jónas P. Jónasson

Rituungar/reiður og 2 ára gamlir lundar í fleygingafugli (%)

Framhald (gjørt í Hamburg):

Labrador Sea convection blows life to the Northeastern Atlantic

The subpolar gyre is an epicenter with large amounts of the ecologically important zooplankton species *Calanus finmarchicus*. Strong convection in the Labrador Sea inflates the subpolar gyre, advects these subarctic waters, and the CalFin they contain, towards east. This has a beneficial impact on the Iceland shelf ecosystem, as well as for seabird colonies around the entire subpolar Atlantic.

Keywords:

Ocean-shelf exchange, sub-decadal variability, predictability, altimetry metric, *Calanus finmarchicus*

